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Abstract
Solutions for a class of linear parabolic partial differential equation are
provided. These solutions are obtained by first solving a system of (n + 1)
nonlinear partial differential equations. This system arises as the coefficients
of a Darboux transformation and is equivalent to a matrix Burgers’ equation.
This matrix equation is solved using a generalized Hopf–Cole transformation.
The solutions for the original equation are given in terms of solutions of the
heat equation. These results are applied to the (1 + 1)-dimensional Schrödinger
equation where all bound state solutions are obtained for a 2n-parameter family
of potentials. As a special case, the solutions for integral members of the regular
and modified Pöschl–Teller potentials are recovered.

PACS numbers: 2.30.Jr, 3.65Ge

1. Introduction

The study of linear partial differential equations (PDEs) has a long well-established history.
In addition to its mathematical elegance, the field of linear PDEs has many important
applications including heat transfer, vibrations in elastic solids and wave propagation. The
standard technique for obtaining exact solutions is the separation of variables. This requires
the integration of a system of ordinary differential equations and leads to solutions in an
eigenfunction expansion. An alternative technique is the use of Darboux transformations [3],
where solutions of different differential equations are linked. An example is given by
Englefield [4] who showed that solutions of the (1 + 1)-dimensional Schrödinger equation
(with h̄ = 2m = 1):

i
∂ψ

∂t
= −∂

2ψ

∂x2
− 2β2sech2(βx)ψ (1)

can be generated from solutions of the free particle equation,

i
∂ψ̃

∂t
= −∂

2ψ̃

∂x2
(2)
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via the Darboux transformation:

ψ = ∂ψ̃

∂x
− β tanh(βx)ψ̃. (3)

More recently, there has been a renewed interest in Darboux transformations and their
applications to Schrödinger’s equation. In a two part paper, Bagrov and Samsonov [1] and
Samsonov and Ovcharov [11] considered the time-independent Schrödinger equation. Using
a composition of n first-order Darboux transformation, they determine new classes of solvable
Schrödinger equations. These new classes of solvable equations have potentials that are
related to the harmonic oscillator, Morse, and effective Coulomb potentials. An extension
to the time-dependent Schrödinger equation has also been given by Bagrov et al [2] but
requires an additional assumption to determine the second-order Darboux transformation.
The survey paper by Rosu [9] traces many of the crucial steps in the development of Darboux
transformations. In [7] Matveev describes the solutions associated with a composition of n
first-order Darboux transformations for a general class of linear evolution equations, though
the primary focus of his work is on nonlinear evolution equations.

In this letter, a generalizedn+1st-order Darboux transformation is constructed that relates
the solutions of the heat equation with a nonzero potential to the heat equation with a zero
potential. It is shown that this Darboux transformation can be found explicitly without the
use of additional assumptions. These results are applied to the (1 + 1) Schrödinger equation
where solutions are obtained for a new class of multi-well potentials.

The letter is organized as follows. In section 2, a system of (n + 1) nonlinear partial
differential equations is derived for the coefficients of the Darboux transformation. Rewriting
this system as a matrix partial differential equation, a generalized Hopf–Cole transformation
is introduced that linearizes the matrix equation and allows for their solution. In section 3,
these results are applied to the (1 + 1) Schrödinger equation where it is shown that separable
solutions of the free particle Schrödinger equation lead to solutions of Schrödinger equation
with multi-well potentials. In section 4, the bound states are obtained. Finally, in section 5,
the integral members of the regular and modified Pöschl–Teller potentials are recovered as
special cases.

2. Darboux transformations

In what follows all functions are assumed to be C∞(R). Consider the heat equation with a
nonzero potential

∂u

∂t
= ∂2u

∂x2
+ f (t, x) u. (4)

Introducing the Darboux transformation

u = ∂n+1v

∂xn+1
+

n∑
i=0

Ai (t, x)
∂iv

∂xi
(5)

followed by the substitution of (5) into (4) leads to

∂n+2v

∂xn+1∂t
+

n∑
i=0

(
Ai
∂i+1v

∂xi∂t
+
∂Ai

∂t

∂iv

∂xi

)
= ∂n+3v

∂xn+3
+Ai

∂i+2v

∂xi+2
+ 2

∂Ai

∂x

∂i+1v

∂xi+1

+
∂2Ai

∂x2

∂iv

∂xi
+ f

(
∂n+1v

∂xn+1
+

n∑
i=0

Ai
∂iv

∂xi

)
. (6)
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Requiring that v satisfy the heat equation and rearranging the terms give(
−f − 2

∂An

∂x

)
∂n+1v

∂xn+1
+

n∑
i=1

(
∂Ai

∂t
− ∂2Ai

∂x2
− 2

∂Ai−1

∂x
− fAi

)
∂iv

∂xi

+

(
∂A0

∂t
− ∂2A0

∂x2
− fA0

)
v = 0. (7)

Since the solutions of the heat equation that appear in equation (7) can be varied arbitrarily,
this requires that the coefficients of equation (7) involving v and its higher order derivatives
must vanish in order for (7) to be satisfied. This leads to the following system of partial
differential equations for the functions Ai and f :

∂A0

∂t
− ∂2A0

∂x2
− fA0 = 0 (8a)

∂Ai

∂t
− ∂2Ai

∂x2
− 2

∂Ai−1

∂x
− fAi = 0 for i = 1, 2, . . . , n (8b)

f + 2
∂An

∂x
= 0. (8c)

Further, eliminating f from (8a) and (8b) using (8c) yields

∂A0

∂t
− ∂2A0

∂x2
+ 2A0

∂An

∂x
= 0 (9a)

∂Ai

∂t
− ∂2Ai

∂x2
− 2

∂Ai−1

∂x
+ 2Ai

∂An

∂x
= 0 for i = 1, 2, . . . , n. (9b)

This system of PDEs can conveniently be written in the matrix Burger’s form

Ωt + 2ΩxΩ − Ωxx = 0 (10)

where Ω is the (n + 1)× (n + 1) matrix given by

Ω =




0 −1 0 · · · 0

0 0 −1 · · · ...

...
...

. . .
. . . 0

0 · · · · · · 0 −1

A0 A1 · · · An−1 An



. (11)

Following Levi et al [6], we introduce the matrix Hopf–Cole transformation

Ω = −ΦxΦ−1 (12)

where substitution of (12) into equation (10) leads to the linear heat matrix equation

Φt = Φxx . (13)

Thus, the entries φij of the matrix Φ are solutions of the heat equation. Rearranging (12) as

ΩΦ = −Φx . (12′)

and comparing the entries of the matrices in (12′) give

φi+1,j = ∂φi,j

∂x
(14a)
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for i = 1, 2, . . . , n and j = 1, 2, . . . , n + 1, and
n+1∑
i=1

Ai−1φi,j = −∂φn+1,j

∂x
(14b)

for j = 1, 2, . . . , n + 1. Renaming

φ1,j = ωj for j = 1, 2, . . . , n + 1 (15)

gives (14a) as

φi,j = ∂i−1ωj

∂i−1
x

(14a′)

for i = 1, 2, . . . , n + 1 and j = 1, 2, . . . , n + 1, and this, in turn, gives (14b) as

∂n+1ωj

∂xn+1
+

n∑
i=0

Ai
∂iωj

∂xi
= 0 (14b′)

for j = 1, 2, . . . , n + 1. Solving the system of equations (14b′) for the Ai gives

Ai = (−1)n−i+1
W�
i

W
(16)

whereW�
i

andW are given by the determinants

W�
i

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1 ω2 · · · ωn ωn+1

∂xω1 ∂xω2 · · · ∂xωn ∂xωn+1

...
...

. . .
...

...

∂i−1
x ω1 ∂i−1

x ω2 · · · ∂i−1
x ωn ∂i−1

x ωn+1

∂i+1
x ω1 ∂i+1

x ω2 · · · ∂i+1
x ωn ∂i+1

x ωn+1

...
...

. . .
...

...

∂n+1
x ω1 ∂n+1

x ω2 · · · ∂n+1
x ωn ∂n+1

x ωn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(17)

and

W =

∣∣∣∣∣∣∣
ω1 · · · ωn+1

...
. . .

...

∂nx ω1 · · · ∂nx ωn+1

∣∣∣∣∣∣∣ . (18)

Thus, the solutions of the equation

∂u

∂t
= ∂2u

∂x2
+ f (t, x)u (4)

are given by

u = ∂n+1ν

∂xn+1
+

n∑
i=0

(−1)n−i+1
W�
i

W

∂iν

∂xi
(19)

where

f = 2
∂2

∂x2
(lnW) (20)

and the W�
i

are given in (17) while ν is any solution of the heat equation. Hereafter, the
solutions ωi found in W will be called the ‘seed’ solutions, as they are used to define the
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source term f while ν will be called a ‘generating’ solution, since varying this solution to
the heat equation generates different solutions to (4). Note that solution (19) can also be
conveniently written as

u = Wν

W
(21)

whereWν is

Wν =

∣∣∣∣∣∣∣∣∣∣∣

ω1 · · · ωn+1 ν

...
. . .

...
...

∂nx ω1 · · · ∂nxωn+1 ∂nx ν

∂n+1
x ω1 · · · ∂n+1

x ωn+1 ∂n+1
x ν

∣∣∣∣∣∣∣∣∣∣∣
. (22)

3. Schrödinger’s equation with multi-well potentials

In this section, Schrödinger’s equation with a variety of multi-well potentials is examined.
The substitutions

t → it x → x and V (t, x) = −f (it, x) (23)

transform equation (4) into Schrödinger’s equation

i
∂u

∂t
= −∂

2u

∂x2
+ V (t, x)u. (24)

Using the solutions

ω1 = eia2
1 t cosh(a1x + b1) and ω2 = eia2

2 t sinh(a2x + b2) (25)

to Schrödinger’s free particle equation, where ai and bi are arbitrary constants, gives W in
(18) as

W = ei(a2
1 +a2

2)t (a2 − a1) cosh((a2 + a1)x + (b2 + b1))

+ ei(a2
1 +a2

2)t (a2 + a1) cosh((a2 − a1)x + (b2 − b1)) (26)

which, in turn, gives V = −f in (20) as

−2
(
a2

2 − a2
1

) (
a2

2 cosh2(a1x + b1) + a2
1 sinh2(a2x + b2)

)
W 2

. (27)

Figure 1 shows examples of potentials when a1 = 1, b1 = 0, b2 = 0 and a2 is varied from
1.25 to 2. The most pronounced double well occurs when a2 = 1.25 and converts into a single
well as a2 increases in value.

Similarly, if the following three seed solutions:

ω1 = eia2
1 t cosh(a1x + b1) ω2 = eia2

2 t sinh(a2x + b2) ω3 = eia2
3 t cosh(a3x + b3) (28)

to Schrödinger’s free particle equation are chosen, more complicated potentials are obtained.
This potential is illustrated in figure 2. Here bi = 0, a1 = 1, a2 = 1.5 and a3 varies from 1.6
to 2.2. When a3 = 1.6 there are three wells. As a3 increases in value to 2.2, the three wells
convert to a single well. Continuing in this fashion, if the following n seed solutions of the
Schrödinger’s free particle equation are chosen as

ωk =
{

ei(ak)2t cosh(akx + bk) if k is odd

ei(ak)2t sinh(akx + bk) if k is even
(29)
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a1=1 for all potentials.
-----a2=2

--------a2=1.75

--------a2=1.5
-----a2=1.25

–6

–5

–4

–3

–2

–1

1

–4 –3 –2 –1 1 2 3 4
x

Figure 1. The family of potentials using two seeds.

for all potentials.a1=.8 and a2 =1.2

-----a3=2.2

--------a3=2

----------a3=1.8

-----a3=1.6

–8

–6

–4

–2

0
–4 –3 –2 –1 1 2 3 4

x

Figure 2. The family of potentials using three seeds.

where ak are constants, k = 1, 2, . . . , n and ak < ak+1, gives potentials that have between 1
and n wells. The potential obtained from (20) when using the n seeds given in (29) is

V = −2
∂2

∂x2
(lnW) (30)

where

W = 1

2n−1

∑
τ∈Tn

{
(−1)Skτ cosh(ατx + βτ )

}
. (31)

Here

Tn = {τ | τ : {1, 2, . . . , n− 1} → {−1, 1}} (32a)

S =
[
n
2 ]∑
s=1

1 − τ (2s)

2
(32b)

kτ =
n−1∏
i=1

(an − τ (i)ai)

n−1∏
k>j

(τ (k)ak − τ (j)aj) (32c)

ατ =
∣∣∣∣∣an +

n−1∑
l=1

τ (l) al

∣∣∣∣∣ (32d)
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and

βτ =
∣∣∣∣∣bn +

n−1∑
l=1

τ (l)bl

∣∣∣∣∣ . (32e)

If cτ = (−1)Skτ , then V simplifies to

V = −2
∑

σ,τ∈Tn cτ cσατασ cosh((ατ − ασ )x + (βτ − βσ ))(∑
ρ∈Tn cρ cosh(αρx + βρ)

)2 . (33)

Close observation of the terms cτ cσ appearing in equation (33) shows that V < 0. Note: if all
bk = 0, the potential V will be symmetric about x = 0, due to the symmetry properties of the
hyperbolic cosine.

4. Bound state solutions

In this section, all the normalized bound state solutions for the class of multi-well potentials
described in section 3 are given.

The general two-well potential (27) was obtained using seed solutions given in (25). To
obtain the two bound state solutions for this potential, it is sufficient to use the following two
generating solutions:

v1 = eia2
1 t sinh(a1x + b1) and v2 = eia2

2 t cosh(a2x + b2). (34)

Substitution of (34) into (21) gives rise to the following normalized bound state solutions:

ψ1 = eia2
1 t sinh(a1x + b1)√

2a1
(
a2

2 − a2
1

) ·W
(35a)

ψ2 = eia2
2 t cosh(a2x + b2)√

2a2
(
a2

2 − a2
1

) ·W
(35b)

whereW is given in (26). Their energy levels are given respectively by

E1 = −a2
1 and E2 = −a2

2 . (36)

In the case of the three-well potential, the following generating solutions are chosen:

v1 = eia2
1 t sinh(a1x + b1)

v2 = eia2
2 t cosh(a2x + b2) (37)

v3 = eia2
3 t sinh(a3x + b3).

Substitution of (37) into (21) gives rise to the bound state solutions. The normalization
constants for each are given by

1
/√

2a1
(
a2

3 − a2
1

) (
a2

2 − a2
1

)
(38a)

1
/√

2a2
(
a2

3 − a2
2

) (
a2

2 − a2
1

)
(38b)

1
/√

2a3
(
a2

3 − a2
1

) (
a2

3 − a2
2

)
. (38c)

The respective energy levels are given by

E1 = −a2
1 E2 = −a2

2 and E3 = −a2
3 . (39)
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V

Ground State
Excited State

–3

–2

–1

0

1

–4 –3 –2 –1 1 2 3 4
x

Figure 3. The potential with two bound states.

Top State

Ground State
Middle State

V

–6

–5

–4

–3

–2

–1

1
–4 –2 2 4x

Figure 4. The potential with three bound states.

Figures 3 and 4 illustrate two- and three-well potentials and their appropriate probability
density functions. The probability density functions are superimposed over each potential at
their respective energy levels. In figure 3 the constants have been chosen as: a1 = 1, a2 = 1.2,
b1 = −1 and b2 = −1; in figure 4: a1 = 1, a2 = 1.3, a3 = 1.6, b1 = 0, b2 = −1 and b3 = 1.

When the potential in the (1 + 1)-dimensional Schrödinger equation is given by (33), there
are exactly n bound states. These states can be obtained by using the n generating solutions

ωk =




eia2
k t sinh(akx + bk)√

2ak
∏
��=k

∣∣a2
� − a2

k

∣∣ if k is odd

eia2
k t cosh(akx + bk)√

2ak
∏
��=k

∣∣a2
� − a2

k

∣∣ if k is even.

(40)

To see that the only bound state solutions for a potential obtained from the n seed solutions
in (29) are those obtained by using the generating solutions in (40), note that the only generating
solutions, up to a constant multiple, which can be used as generating solutions and which yield
a separable solution are

v =



A ei�2t cosh(�x) + B ei�2t sinh(�x) if � < 0
A + Bx if � = 0

A ei�2t cos(�x) + B ei�2t sin(�x) if � > 0.

(41)
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Using the generating solution from (41) when � = 0 or � > 0 leads to solutions of
Schrödinger’s equations which are not square integrable, since asymtotically they behave,
respectively, either linearly or as c sin(kx + d). Thus, the only choice remaining is the
generating solutions for � < 0. If � �= ak, the solutions asymptotically grow exponentially,
and thus are not square integrable. Therefore, it is necessary to have � = ak to obtain a bound
state. If the generating solution coincides with a member of the seed solution family, the
constructed solution will be identically zero (see Samsonov [10]). If the generating solution
has the same energy but is linearly independent of the seed solutions used in constructing the
potential, that is, one from (40), the resulting solution is square integrable with normalizing
constant

nk = 1√
2ak

∏
��=k

∣∣a2
� − a2

k

∣∣ . (42)

Finally, the remaining linearly independent solutions to (24), when V is given by (30),
associated with the energy levels of the generating solutions given in (40) are obtained by
separation of variables and using a reduction of order. These solutions grow exponentially
and are again not bounded.

To justify the normalizing constants given in (42), observe that when the seed solutions
are given by (29) and the generating solution is given in (41), then the solution uk = Wηk/W

is given by (21) and has the property that(
Wηk

W

)2

= n2
k

d

dx

(
Uk

W

)
. (43)

Here Uk is obtained by replacing the kth seed in (29) used to generate W by the linearly
independent kth solution from

ηk =
{

ei(ak)2t sinh(akx + bk) if k is odd

ei(ak)2t cosh(akx + bk) if k is even.
(44)

The seed solutions given in (29) that are used to generate the potential (30) were first
cited by Matveev and Salle [8] but these results appear not to be well known in the literature.
Furthermore, an extensive literature search leads us to believe that we are the first to give the
normalized bound state solutions (35).

5. Pöschl–Teller potentials

In this section, the integral members of regular and modified Pöschl–Teller potentials are
recovered by choosing the seed solutions judiciously.

5.1. Regular Pöschl–Teller potentials

The class of potentials commonly referred to as the Pöschl–Teller potentials is given by

V (x) = �(�− 1)α2

sin2 αx
+
m(m− 1)α2

cos2 αx
(45)

see, for example, Flügge [5]. By choosing the seed solutions appropriately, the integral
members of regular Pöschl–Teller potentials can be recovered. For example, if the seed
solution is chosen as

ω1 = e−iα2 t sin(αx) or ω1 = e−4iα2 t sin(2αx) (46)
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then the potential V (x) in (4) is

V (x) = 2α2

sin2 αx
or V (x) = 2α2

sin2 αx
+

2α2

cos2 αx
(47)

respectively. These are the second members of the regular Pöschl–Teller potential (i.e.,
max{l,m} = 2). The remaining case at this level is

V (x) = 2α2

cos2 αx
. (48)

This can be obtained from the first equation in (46) by the simple translation, x → x + π
2α . To

obtain the higher level Pöschl–Teller potential requires using more seed solutions. If the seed
solutions ωj are chosen to be

ωj = e−ia2
j t sin(ajx) (49)

then there are three cases which must be distinguished. If m = 1 then aj = jα, j = 1,
2, . . . , � − 1, if 1 < m < �, then aj = jα, j = 1, 2, . . . , � − m and aj+1 = aj + 2 for
j = �− m + 1, . . . , � − 1 and if m = � then aj = 2jα for j = 1, 2, . . . , � − 1. Finally, the
translation x → x + π

2α gives the remaining members of the family. For example, to generate
all of the modified Pöschl–Teller potential for max{l,m} = 4, use the seed solutions

ω1 = e−iα2 t sin(αx) ω2 = e−4iα2t sin(2αx) ω3 = e−9iα2t sin(3αx) (50a)

ω1 = e−iα2 t sin(αx) ω2 = e−4iα2t sin(2αx) ω3 = e−16iα2t sin(4αx) (50b)

ω1 = e−iα2 t sin(αx) ω2 = e−9iα2t sin(3αx) ω3 = e−25iα2t sin(5αx) (50c)

ω1 = e−4iα2 t sin(2αx) ω2 = e−16iα2 t sin(4αx) ω3 = e−36iα2t sin(6αx). (50d)

This gives, respectively, the Pöschl–Teller potentials

V (x) = 12α2

sin2 αx
(51a)

V (x) = 12α2

sin2 αx
+

2α2

cos2 αx
(51b)

V (x) = 12α2

sin2 αx
+

6α2

cos2 αx
(51c)

V (x) = 12α2

sin2 αx
+

12α2

cos2 αx
. (51d)

The translation x → x + π
2α converts (50a)–(50c) to

ω1 = e−iα2 t cos(αx) ω2 = e−4iα2 t sin(2αx) ω3 = e−9iα2 t cos(3αx) (52a)

ω1 = e−iα2 t cos(αx) ω2 = e−4iα2 t sin(2αx) ω3 = e−16iα2 t sin(4αx) (52b)

ω1 = e−iα2 t cos(αx) ω2 = e−9iα2 t cos(3αx) ω3 = e−25iα2t cos(5αx) (52c)

which gives the remaining members of the family, namely

V (x) = 12α2

cos2 αx
(53a)
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V (x) = 12α2

cos2 αx
+

2α2

sin2 αx
(53b)

V (x) = 12α2

cos2 αx
+

6α2

sin2 αx
. (53c)

Note that it is not necessary to convert (50d) as it would just interchange the two terms in
(51d).

5.2. Modified Pöschl–Teller potentials

The class of potentials commonly referred to as the modified Pöschl–Teller potentials [5] is
given by

V (x) = �(�− 1)α2

cosh2 αx
. (54)

When � is an integer, this family can be recovered by choosing the seed solutions ωj as

ωk =
{

ei(kα)2t cosh(akx) if k is odd

ei(kα)2t sinh(akx) if k is even
(55)

for k = 1, 2, . . . , �. To illustrate, if the seed solutions ω1 = e−iα2 t cosh(αx), ω1 =
e−i4α2t sinh(2αx) and ω1 = e−i9α2 t cosh(3αx) are chosen, then the potential V (x) in (27) is

V (x) = − 12α2

cosh2 αx
. (56)

This letter constructs a link between Schrödinger’s equations with zero and nonzero
potentials using an n + 1st-order Darboux transformation. A system of n + 1 nonlinear partial
differential equations is constructed for the coefficients of the Darboux transformation. Via a
Hopf–Cole type transformation, this system is solved. Using separable solutions of the free
particle Schrödinger equation, new classes of symmetric and non-symmetric potentials are
obtained. For these new potentials, bound state energy levels and corresponding bound state
solutions are obtained. As special cases, the integral members of the regular and modified
Pöschl–Teller potentials are recovered.
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